
The Stata Journal (yyyy) vv, Number ii, pp. 1–21

Record Linkage using STATA: Pre-processing,
Linking and Reviewing Utilities

Nada Wasi
Survey Research Center

Institute for Social Research
University of Michigan

nwasi@umich.edu

Aaron Flaaen
Department of Economics

University of Michigan
aflaaen@umich.edu

Abstract.

This article describes STATA utilities which facilitate several steps in conduct-
ing probabilistic record linkage – the technique typically employed for merging
two datasets with no common record identifier. While the pre-processing tools
are developed specifically for linking two company databases, the other tools can
be used for many different types of linkage. Specifically, the stnd compname and
stnd address commands parse and standardize company names and addresses in
order to improve the match quality in the linking step. The reclink2 command
is a generalized version of reclink that allows for a many-to-one matching pro-
cedure. Finally, clrevmatch is an interactive tool that allows the user to review
matched results in an efficient and seamless manner. Rather than exporting results
to another file format (e.g., Excel), inputting clerical reviews, and importing back
into STATA, the clrevmatch tool conducts all of these steps within STATA. This
helps improve the speed and flexibility of the whole matching process which often
involves multiple runs.

Keywords: record linkage, fuzzy matching, string standardization

1 Introduction

Businesses, government agencies and academic researchers increasingly collect informa-
tion about companies, their profiles and various business activities (e.g., ReferenceUSA,
SEC filings, LexisNexis, the Business Register of the U.S. Census Bureau). This infor-
mation can be collected at several different levels of aggregation: plant (establishment or
branch), firm or tax identifying unit. Several household surveys also ask respondents to
report name, address, and other characteristics of their employers. As these databases
contain specific information based on the purpose of their construction, researchers of-
ten need to combine data from multiple sources to facilitate their analysis. For instance,
Abowd and Stinson [2013] link employers from the Survey of Income and Program Par-
ticipation to those in the Social Security Administration’s Detailed Earnings Record
to study measurement errors from self-reported earnings. Agrawal and Tambe [2013]
match employers from workers’ resumes to a firm history database to assess how private
equity acquisitions impact labor market outcomes of workers.

When two datasets have a common unit identifier (e.g., firm’s identification number),

c© yyyy StataCorp LP st0001

2 Record linkage utilities

merging datasets is a trivial exercise. However, in many cases no common identifier
exists – making it challenging to join corresponding observations from different datasets.
Probabilistic record linkage (also known as data matching and fuzzy merge) is typically
employed in this situation. Entities are linked based on other partial-identifiers such
as names and addresses. Linking via such fields is complicated by a number of factors:
different databases likely record data in different formats, the potential for misspellings
and alternate name conventions, and so on. An example below illustrates the difficulty
in this form of matching. Here a researcher would like to match self-reported employers
from a household survey (Table 1) to a firm database (Table 2).1

Usually, company records obtained from household surveys do not always contain full
official company names whereas records from a firm database often do. Even within the
same dataset, the abbreviations used may vary across records. Using STATA’s merge

command based on name and street address will yield only one match pair (respondent
#5 and firm #8). Unlike merge, probabilistic record linkage relies on an approximate
string comparison function so that records with the most “similar” strings are joined
as a match. The formal mathematics of probabilistic record linkage is developed by
Fellegi and Sunter [1969]. Christen [2012] provides a comprehensive review of issues
and methods related to record linkage.

In practice, the process involves three key steps: (1) pre-processing; (2) probabilistic
linking; and (3) clerical review of machine-generated matched pairs. The pre-processing
step assures both datasets have the same formats and chosen fields are meaningful in
matching. Typically, the pre-processing step itself consists of two substeps: parsing a
field into the relevant sub-components, and standardizing common character strings.
This often helps researchers achieve higher quality matches in the linking step. As an
example, consider the employer of respondent #2. Without pre-processing, firm #2
“AT&T INC.” (an incorrect match) will look more similar to “BT&T INC.” than “BB
& T FKA COASTAL FEDERAL BANK” (a correct match) would. Other than the
typo, this is because (1) the “INC.” characters make respondent #2’s employer and
firm #2 more similar; (2) the record of firm #14 contains extra information about its
formerly known as (FKA) name; and (3) the presence of a white space before and after
the & character. Pre-processing that parses its entity type and alternate name into
separate fields and standardizing the fields to ensure format consistency would solve
these problems.

The second step involves linking records from two datasets. In this step, researchers
choose a set of fields (e.g., standardized name, standardized address) as inputs into a
probabilistic matching algorithm. For each record from the first dataset, the algorithm
selects candidates from the second data set. These candidates may be all records from
the second dataset or are selected based on certain criteria (e.g., only records from
the same state). Then, for each pair consisting of a record from the first dataset and a
corresponding candidate from the second dataset, the program uses a string comparison
function to calculate field-similarity scores. This is accomplished for each input field
individually, and then a (composite) pair-similarity score is constructed as the sum of

1. The examples presented in this paper contain no actual respondent data from any survey.

N. Wasi and A. Flaaen 3

Table 1: An example of employer records from a household survey

Respondent id Name Street add

1 7-11 ROUTH STREET
2 BT&T INC. P.O. BOX 345

3 AT & T 208 S. AKARD ST

4 KROGER
5 WAL-MART STORES, INC. 508 SW 8TH STREET

6 WLAMART 508 8TH STREET
7 WALMART 508 8TH ST

Table 2: An example of records from a firm database

Firm id Name Street add

1 7-ELEVEN, INC 1722 ROUTH STREET
2 AT&T INC. P.O. BOX 132160
3 DISH NETWORK CORPORATION 9601 SOUTH MERIDIAN BOULEVARD

4 HVM L.L.C. 11525 N. COMMUNITY HOUSE ROAD
D/B/A EXTENDED STAY HOTELS

5 RHEEM MANUFACTURING COMPANY 1100 ABERNATHY RD NE STE 1400

6 STARBUCKS CORPORATION 2401 UTAH AVENUE SO., 8TH FLOOR
7 THE KROGER CO 1014 VINE ST
8 WAL-MART STORES, INC. 508 SW 8TH STREET
9 KMART CORPORATION 3333 BEVERLY ROAD

10 PROFESSIONAL PHARMACIES 11 BRIDGEWAY PLAZA
INC DBA PLAZA PHARMACY

11 MADISON HOLDINGS, INC. C/O 270 PARK AVENUE, SUITE 1503

WORLD FINANCIAL
12 RESORTS U.S.A. T/A SEASIDE RESORT 18 W. JIMMIE ROAD
13 PG INDUSTRIES ATTN JOHN SMITH PO BOX 2706

14 BB & T FKA COASTAL FEDERAL BANK POB 345

all field-similarity scores, adjusted by specified weights. The candidate with the highest
pair-similarity score is chosen as “a match”.

Although the pair-similarity scores are correlated with correct matches, they are
an imperfect metric. A manual clerical review of machine-generated matched pairs is
usually necessary, especially for pairs with low scores. Typical record linking processes
require several runs (often called passes) where researchers try different combinations of
fields, criteria for choosing candidates (blocking strategies) and their associated weights.
Results from each run are reviewed and unmatched records go to the next run to be
tried again with different matching specifications.

4 Record linkage utilities

This paper introduces a set of utilities which facilitate the pre-processing and clerical
review steps. It also briefly explains a modification of an existing record linkage com-
mand (reclink, see Blasnik [2010]) to make it more flexible. The example above will
be used throughout the paper, although the actual record linkage tasks often involve
very large databases. Sections 2 and 3 explain the stnd compname and stnd address

commands which parse and standardize company names and addresses, respectively.
These parsers and standardizers are based on a set of default rule-based pattern files,
which are installed in conjunction with the commands. Section 4 explains how ad-
vanced users can modify these pattern files to construct specialized pre-processing rules
for an individual matching exercise. The new reclink2 command is described in Sec-
tion 5. Unlike reclink which assumes a one-to-one relationship between two datasets,
reclink2 allows for many-to-one matching. Although a minor modification, it repre-
sents a substantial increase in the versatility of the command. Many record-linking
exercises are by nature a many-to-one match. This is the case of our example above
where more than one respondent may work for the same employer. Other examples
include matching establishments to firms, and matching customer location of sale with
establishment directories. Finally, Section 6 explains the clrevmatch command: an
interactive tool allowing a researcher to review and assess each matched pair gener-
ated by a record-linking program. This utility increases the efficiency of the clerical
review procedure, typically one of the most time-intensive tasks. It also helps improve
the speed of the whole matching process which often involves multiple runs. Without
clrevmatch, users usually need to export results to another file format (e.g., Excel),
input clerical reviews, and then import back into STATA.

2 The stnd compname command

2.1 Syntax

stnd compname varname [if exp] [in range], gen(newvarname)[
patpath(directory of pattern files)

]
2.2 Description

The stnd compname command standardizes and parses a string variable containing com-
pany names into 5 components; gen(newvarname) is required. The generated outputs
are in the following order: (1) official name; (2) Doing-Business-As (DBA) name; (3)
Formerly-Known-As (FKA) name; (4) business entity type; and (5) attention name.
Each component is standardized. If a given name cannot be parsed, the original value
is recorded in the official name field. stnd compname relies on several subcommands and
rule-based pattern files. These subcommands and pattern files must also be installed.
The default directory of the pattern files is /ado/plus/p/. If the pattern files are in-
stalled in a different directory, the user must specify the directory in the patpath()

option. If a particular pattern file is not found, the program will display a warning

N. Wasi and A. Flaaen 5

message and the standardizing or parsing step associated with that file will be skipped.
The default pattern files are based on U.S. business names. See Section 4 for details.

2.3 Examples

The following examples apply stnd compname to the company names listed in the in-
troduction section. The respondent employers dataset contains the employer names
from the household survey in Table 1. The variable firm name is the original variable
containing company names to be standardized.

. use respondent_employers, clear

. stnd_compname firm_name, gen(stn_name stn_dbaname stn_fkaname entitytype attn
> _name)

. list firm_name stn_name stn_dbaname entitytype

firm_name stn_name stn_db~e entity~e

1. 7-11 7 11
2. BT&T INC. BT & T INC
3. AT & T AT & T
4. KROGER KROGER
5. WAL-MART STORES, INC. WAL MART STORES INC

6. WLAMART WLAMART
7. WALMART WALMART

The firm dataset dataset contains the firm listing in Table 2.

. use firm_dataset, clear

. list firm_name

firm_name

1. 7-ELEVEN, INC
2. AT&T INC.
3. DISH NETWORK CORPORATION
4. HVM L.L.C. D/B/A EXTENDED STAY HOTELS
5. RHEEM MANUFACTURING COMPANY

6. STARBUCKS CORPORATION
7. THE KROGER CO
8. WAL-MART STORES, INC.
9. KMART CORPORATION

10. PROFESSIONAL PHARMACIES INC DBA PLAZA PHARMACY

11. MADISON HOLDINGS, INC. C/O WORLD FINANCIAL
12. RESORTS U.S.A. T/A SEASIDE RESORT
13. PG INDUSTRIES ATTN JOHN SMITH
14. BB & T FKA COASTAL FEDERAL BANK

. stnd_compname firm_name, gen(stn_name stn_dbaname stn_fkaname entitytype attn
> _name)

6 Record linkage utilities

. list stn_name stn_dbaname entitytype

stn_name stn_dbaname entity~e

1. 7 11 INC
2. AT & T INC
3. DISH NETWORK CORP
4. HVM EXTENDED STAY HOTELS LLC
5. RHEEM MFG CO

6. STARBUCKS CORP
7. THE KROGER CO
8. WAL MART STORES INC
9. KMART CORP

10. PROF PHARMACIES PLZ PHARMACY INC

11. MADISON HOLDINGS INC
12. RESORTS USA SEASIDE RESORT
13. PG IND
14. BB & T

. list stn_name stn_fkaname attn_name

stn_name stn_fkaname attn_name

1. 7 11
2. AT & T
3. DISH NETWORK
4. HVM
5. RHEEM MFG

6. STARBUCKS
7. THE KROGER
8. WAL MART STORES
9. KMART

10. PROF PHARMACIES

11. MADISON HOLDINGS WORLD FINANCIAL
12. RESORTS USA
13. PG IND JOHN SMITH
14. BB & T COASTAL FEDERAL BANK

3 The stnd address command

3.1 Syntax

stnd address varname [if exp] [in range] , gen(newvarname)[
patpath(directory of pattern files)

]

N. Wasi and A. Flaaen 7

3.2 Description

The stnd address command standardizes and parses a string variable specified as a
street address into 5 components; gen(newvarname) is required. The generated outputs
are in the following order: (1) street number and street; (2) PO Box; (3) Unit, Apt or
STE number; (4) building information; and (5) floor or level information. If a given
input cannot be parsed, the original value is recorded in the first field. Similar to
stnd compname, stnd address relies on several subcommands and rule-based pattern
files being installed. The default directory of the pattern files is /ado/plus/p/. If the
pattern files are installed in a different directory, the user needs to specify the directory
in the patpath() option. If a particular pattern file is not found, the program will
display a warning message and the standardizing or parsing step associated with that
pattern file will be skipped. The default pattern files are based on U.S. addresses. See
Section 4 for details.

3.3 Examples

Analogous to the previous section, we now apply the stnd address command to the
street address in the two databases used above. The original variable containing street
addresses is streetadd.

. use respondent_employers, clear

. list streetadd

streetadd

1. ROUTH STREET
2. P.O. BOX 345
3. 208 S. AKARD ST
4.
5. 508 SW 8TH STREET

6. 508 8TH STREET
7. 508 8TH ST

. stnd_address streetadd, gen(add1 pobox unit bldg floor)

. list add1-floor

add1 pobox unit bldg floor

1. ROUTH ST
2. BOX 345
3. 208 S AKARD ST
4.
5. 508 SW 8TH ST

6. 508 8TH ST
7. 508 8TH ST

. use firm_dataset, clear

8 Record linkage utilities

. list streetadd

streetadd

1. 1722 ROUTH STREET
2. P.O. BOX 132160
3. 9601 SOUTH MERIDIAN BOULEVARD
4. 11525 N. COMMUNITY HOUSE ROAD
5. 1100 ABERNATHY RD NE STE 1400

6. 2401 UTAH AVENUE SO., 8TH FLOOR
7. 1014 VINE ST
8. 508 SW 8TH STREET
9. 3333 BEVERLY ROAD

10. 11 BRIDGEWAY PLAZA

11. 270 PARK AVENUE, SUITE 1503
12. 18 W. JIMMIE ROAD
13. PO BOX 2706
14. POB 345

. stnd_address streetadd, gen(add1 pobox unit bldg floor)

. list add1-floor

add1 pobox unit bldg floor

1. 1722 ROUTH ST
2. BOX 132160
3. 9601 S MERIDIAN BLVD
4. 11525 N COMMUNITY HOUSE RD
5. 1100 ABERNATHY RD NE STE 1400

6. 2401 UTAH AVE S FL 8
7. 1014 VINE ST
8. 508 SW 8TH ST
9. 3333 BEVERLY RD

10. 11 BRIDGEWAY PLZ

11. 270 PK AVE STE 1503
12. 18 W JIMMIE RD
13. BOX 2706
14. BOX 345

4 Options: Specifying alternative pattern files

The stnd compname and stnd address commands are wrappers of a sequence of several
subcommands. Each subcommand parses or standardizes a string based on its associ-
ated rule-based pattern file(s). In general, parsers use the string characters specified
in the pattern files to guide how to split the original string variables into two or more
variables. Standardizers map a set of strings to their standardized forms. There are
some variations across these subcommands. Advanced users may want to specify al-
ternate pattern files, or modify the rules in the existing files for standardizing that is

N. Wasi and A. Flaaen 9

customized for a particular matching project. To do this, users must first understand
how these subcommands work, and their dependencies on each other.

The subcommands used for the stnd compname and stnd address commands are
listed in order in Tables 3 and 4, respectively. The sequence is critically important
as some subcommands and their associated pattern files are conditional on certain
characters being removed or standardized in earlier stages. While users may apply
any of these subcommands directly, it is not recommended without carefully inspecting
its associated pattern file(s).

Table 3: Subcommands used in stnd compname

Subcommands Pattern file names
4.1 parsing namefield P10 namecomp patterns.csv
4.2 stnd specialchar P21 spchar specialcases.csv

P22 spchar remove.csv
P23 spchar rplcwithspace.csv

4.3 stnd entitytype P30 std entity.csv
4.4 stnd commonwrd name P40 std commonwrd name.csv
4.5 stnd commonwrd all P50 std commonwrd all.csv
4.6 stnd numbers P60 std numbers.csv
4.7 stnd NESW P70 std NESW.csv
4.8 stnd smallwords P81 std smallwords all.csv
4.9 parsing entitytype P90 entity patterns.csv
4.10 agg acronym

Table 4: Subcommands used in stnd address
Subcommands Pattern file names

4.2 stnd specialchar P22 spchar remove.csv
P23 spchar rplcwithspace.csv

4.5 stnd commonwrd all P50 std commonwrd all.csv
4.6 stnd numbers P60 std numbers.csv
4.7 stnd NESW P70 std NESW.csv
4.8 stnd smallwords P81 std smallwords all.csv

P82 std smallwords address.csv
4.11 stnd streettype P110 std streettypes.csv
4.12 parsing pobox P120 pobox patterns.csv
4.13 stnd secondaryadd P131 std secondaryadd.csv
4.14 parsing add secondary P132 secondaryadd patterns.csv

Below we provide details of the required format of pattern files used in the parsing
and standardizing subcommands. As shown in Tables 3 and 4, some subcommands are

10 Record linkage utilities

used for both stnd compname and stnd address, while others are command-specific.
The agg acronym command removes a space between one-letter words in a string (e.g.,
“Y M C A” is changed to “YMCA”), and does not rely on a pattern file.

4.1 Parsing commands

The subcommands listed in the tables include four parsers. The stnd compname com-
mand relies on parsing namefield and parsing entitytype. The stnd address com-
mand uses parsing pobox and parsing add secondary.

The parsing namefield command is the first step in the stnd compname command.
It checks if the specified field actually contains more than a single name. Some company
listings include both official names and trade names or former names in the same field.
Other listings include ATTN or C/O followed by a person name (see examples in Table
2). Applying parsing namefield to “[Official Name] [keyword] [Alternative Name]”
will split the official name from its alternative name without retaining the keyword
(e.g., DBA). Each row of the pattern file P10 namecomp pattern.csv associated with this
command consists of two columns: column 1 is a string pattern to search for (keyword);
column 2 is the associated name component type. For example, “PROFESSIONAL
PHARMACIES INC DBA PLAZA PHARMACY” will be split into “PROFESSIONAL
PHARMACIES INC” and “PLAZA PHARMACY”.

The parsing entitytype command works slightly differently as it keeps the word
in its associated pattern file and places it under the new entity-type variable. Following
the example above, this subcommand further splits “PROFESSIONAL PHARMACIES
INC” to “PROFESSIONAL PHARMACIES” and “INC” given that “INC” exists in
its pattern file, P90 entity patterns.csv. This pattern file also consists of two columns.
Column 1 is a string pattern containing the search keywords of entity types. Column
2 attempts to limit parsing when keywords are actually a part of the company name.2

If the string characters in column 2 are found in addition to those in column 1, that
parsing will be skipped. It should be noted that this pattern file does not include
all possible words for entity types as it is used in the later stage of stnd compname

where some standardizations have been done earlier. For instance, the pattern file only
includes “INC” but neither “INCORP” nor “INCORPORATION” because these two
words have already been standardized to “INC” in an earlier stage.

The parsing pobox command parses PO Box information into another field. Each
row of its pattern file, P120 pobox patterns, lists a keyword possibly describing PO Box
information (e.g., PO BOX, PO DRAWER, etc). The parsing add secondary com-
mand parses secondary information often found in the string containing street address
into separate fields. Its pattern file, P132 secondaryadd patterns.csv is more compli-
cated as this command searches over different combinations of address formats. This
pattern file consists of 3 columns. Column 1 contains a string pattern to search for, uti-

2. For example, if a row lists “CO INC, & CO”, parsing entitytype will treat “CO INC” as an entity
type only if it does not find “& CO”. This avoids parsing “TIFFANY & CO INC” into “TIFFANY
&” and “CO INC”.

N. Wasi and A. Flaaen 11

lizing Regular Expressions. Column 2 is the associated information type. For instance,
“STNUM ST APT” refers to the “street number-street-apt” format. “BLDG FL” refers
to the “building name-floor” format. Columns 3 and 4 contain information on the loca-
tion of key address components that are used in conjunction with the Regular Expression
pattern from column 1.

4.2 Standardizing commands

The stnd specialchar command deals with special characters, using 3 associated pat-
tern files. The stnd entitytype, stnd commonwrd name, stnd commonwrd all, stnd

numbers, stnd NESW and stnd secondaryadd commands are all based on word substi-
tution. Each uses a single pattern file. The stnd smallwords command is also based
on word substitution but only takes an action if that word does not constitute the whole
string. It has two associated pattern files: P81 std smallwords all.csv is always used;
and P82 std smallwords address.csv is only used in the stnd address command.

The pattern files associated with the standardizers described above (with the excep-
tion of the stnd specialchar subcommand) consist of 2 columns: column 1 contains
a string to be substituted (original form) and column 2 contains its standardized form.
All default pattern files use a short form of standardization (“STREET” is changed
to “ST”; “East” is changed to “E”.) Shorter forms are chosen for two reasons. First,
abbreviating a word is less risky than expanding a word. For example, expanding “E” to
“East” may end up wrongly expanding “JOHN E SMITH” to “JOHN EAST SMITH”.
Second, these words tend to have small distinguishing power. The longer they are, the
more they contribute to a field-similarity score. Most word standardization subcom-
mands rely on STATA’s subinword command to ensure that the string is not a part
of a larger string.3 This prevents replacing “Eastern Michigan University” with “Eern
Michigan University”.

The stnd specialchar command standardizes special characters (e.g., ∼ ! #).
Characters which tend to be typographical errors are removed. Characters which tend
to separate words are replaced with a whitespace.4 There are 3 associated pattern
files. P21 spchar specialcases.csv is an initial standardization to perform with company
names before removing or replacing any special characters. For instance, we may want to
replace “.COM” with “DOTCOM” before removing “.”; or replace “A+” with “APLUS”
before changing “+” to “&”. This pattern file is similar to other standardizers listed

3. stnd commonwrd name, stnd commonwrd all, stnd numbers, stnd NESW, stnd secondaryadd and
stnd smallwords search for the word specified in their pattern files everywhere within the string.
stnd entitytype only searches for the word at the end of the string because its presence in the
middle of the string could have other purposes. As an example, “PC” at the end of the string tends
to stand for “PROFESSIONAL CORPORATION” but “PC” in the middle is likely to indicate a
business related to “PERSONAL COMPUTER”.

4. It does matter whether a character is removed or replaced with a white space. Consider
“L.L.BEAN”, “LL BEAN” and “LL BEAN,INCORP”. Simply removing both “.” and “,” gives
“LLBEAN”, “LL BEAN”, “LL BEANINCORP”. This causes 2 problems: (a) “LLBEAN” will
not appear the same as “LL BEAN”; and (b) a pattern file that looks for a word “INCORP” to
standardize to “INC” will not find it as the last string contains “LL” and “BEANINCORP”.

12 Record linkage utilities

above where column 1 contains a string to be substituted (original) and column 2
contains its standardized form. It is only relevant for stnd compname.

The pattern files P22 spchar remove.csv and P23 spchar rplcwithspace.csv contain
characters to be removed, and to be replaced with a whitespace, respectively. The
stnd specialchar command itself has an option for characters to be excluded. While
stnd compname uses all characters listed in the pattern files, stnd address specifies the
program to initially retain “#” and “-”, because “#” is often a prefix to apartment
numbers and “-” may indicate street numbers (e.g., “179-184”).

4.3 Examples

Case 1: A user wants to use the default pattern files in her first run. In the sec-
ond run, she wants to further standardize the already-standardized variable from the
first run. Assume that she has all default pattern files installed in the default directory
“c:/ado/plus/p/”. In the first run, she applies stnd compname to a variable “orig name”
and specifies the output variables as: “name stn1” “dba” “fka” “entity” “attn”:
. stnd compname orig name, gen(name stn1 dba fka entity attn)

In the second run, she wants to standardize common words in company names fur-
ther. She will need to create a new pattern file P40 std commonwrd name.csv. Assume
she puts this pattern file in “c:/ado/personal/mypattern pass2/”. This directory may
contain only this pattern file. In this second run, she applies stnd compname to the
standardized variable from the first stage:
. stn compname name stn1, gen(name stn2)

>patpath(c:/ado/personal/mypattern pass2/)

The program will display a series of warning messages indicating that some pattern files
are not found, but in this case they may be safely ignored as the relevant steps were
already accomplished in the first run.

Case 2: A user wants to remove or edit some rules listed in the default pattern files. For
example, the user wants to standardize business names and addresses from a database of
firms from the United Kingdom. While these U.K. firm listings are in English and share
many common word abbreviations as U.S. listings, there are some differences. For in-
stance, U.K. legal entity naming conventions include “Public Limited Corporation” (or
“PLC”), “Community Interest Company” (or “CIC”), and “Royal Charter” (or “RC”).
To incorporate these patterns, we suggest the user first copy all default pattern files
into a different directory, say “c:/ado/personal/UKpatterns”. Next, the user would edit
the pattern file P30 std entity.csv to enable the stnd compname program to standardize
these words. And to make the program parse these words into an entity type field, the
user would edit P90 entity patterns.csv. Finally, the user would need to specify that
stnd compname use pattern files in this directory:
. stnd compname orig name, gen(name stn dba fka entity attn)

>patpath(c:/ado/personal/UKpatterns/)

In this case, the program should not display any warning messages.

It is also possible to apply these standardizing utilities to non-English business

N. Wasi and A. Flaaen 13

databases, provided the language uses the Roman alphabet. In these cases, however,
the user must collect a full set of compatible standardization files that apply to the
country-specific business name and address system. In addition to specifying different
entity naming conventions, the user will need to update the other pattern files, such as
those corresponding to street types, PO Box, and common word abbreviations. For ex-
ample, in much of Latin America common street types include: “Calle (CLL)”, “Camino
(CAM)”, “Paseo (PSO)”, and “Avenida (AVE)”. The term “PO Box” is not always
used in non-English countries. Mexico uses both “PO Box” and “Casilla de Correos”
or “Apartado Postal”. Most European countries use different words (e.g., Postfach or
PF for German, Boite Postale or BP for French). For these cases, the user would edit
the pattern files P110 std streetetype.csv and P120 pobox patterns.csv, respectively.5

5 The record linkage command: reclink2

5.1 Syntax

reclink2 varlist using filename, idmaster(varname) idusing(varname)

gen(newvarname)
[
wmatch(match weight list) wnomatch(non-match weight

list) orblock(varlist) required(varlist) exactstr(varlist)

exclude(filename) merge(newvarname) uvarlist(varlist) uprefix(text)

minscore(#) minbigram(#) manytoone npairs(#)
]

5.2 Description

reclink2 performs probabilistic record linkage between two datasets that have no joint
identifier necessary for standard merging. The command is an extension of the reclink

command originally written by Michael Blasnik. The two datasets are called the “mas-
ter” and “using” datasets where the “master” dataset is the dataset in memory. For
each observation in the “master” dataset, the program tries to find the best match from
the “using” dataset based on the specified list of variables, their associated match and
non-match weights, and bigram scores.6 The reclink2 command introduces two new
options, manytoone and npairs().

The manytoone option specifies that the command will allow records from the using
dataset to be matched to more than one record from the master dataset (a many-to-one

5. Other examples include the use of the term “AG” in Germany, “SA” in France , and “SpA” in
Italy to indicate an incorporated firm. Among many others, users would need to include the terms
“Strasse (Str)” in Germany, “Rue (R)” in France, and “Via (V)” in Italy as street types for address
standardization. All English directional words also would require translation.

6. Bigram is an approximate string comparator, which is computed from the ratio of the number of
common two consecutive letters of the two strings and their average length minus one. The bigram
score used in reclink is a modified version where a pair of strings with up to four common prefix
letters also gets extra credit. Other common string comparators include the Jaro-Winkler string
comparator, the Levenshtein edit distance, and Q-gram (see Christen (2012) for details).

14 Record linkage utilities

linking procedure). In the base version of reclink, the first step finds and removes
perfectly matched pairs from both datasets. Hence, a record in the using dataset that
is perfectly matched to a record in the master dataset cannot be subsequently linked
to an additional record in the master dataset for which it is an adequate, though not
perfect, match. This option effectively allows for sampling with replacement from the
using dataset. The examples below illustrate the problem of using a program assuming
a one-to-one match on an inherently many-to-one match setting.

The npairs() option specifies that the program retain the top n potential matches
(above the minimum score threshold) from the using dataset that correspond to a given
record in the master dataset. In the base version of reclink, only the single candidate
with the highest match score is retained as a match – unless the top match scores
are identical. Because the approximate string comparator is imperfect, there can be
situations where an incorrect record gets a higher score than a correct record, and
hence is selected by reclink as the best match. Typically, such matches must be
removed in the clerical review process, and then in subsequent “passes” the varlist
and/or weights are altered in an attempt to find the more appropriate match. The
npairs option allows the user to review and find additional matches that would have
otherwise required multiple “passes” and hence multiple stages of clerical review. As
there is no increase in computation time for this option, it should help improve efficiency
for large-scale matching problems which typically rely on multiple passes for optimal
accuracy and coverage.7

It should be noted, however, that while the npairs(n) option allows one to capture
a correct match that does not yield the highest score, incorrect matches which pass
the minimum score threshold will also be included in the output. Therefore, it is
recommended to keep n small (typically 2 or 3) and use the npairs(n) option in
conjunction with the minscore option.8

If manytoone and npairs are not specified, reclink2 produces exactly the same
results as reclink in most cases.9 The existing set of options in reclink are also
retained. See help reclink for further explanation of other inputs.

5.3 Examples

Continuing with the example from previous sections, we take the now-standardized
datasets of respondent’s employer and firm data and illustrate how match results differ
across specifications. Our master and using datasets are “respondent employers stn.dta”
and “firm dataset stn.dta”, respectively. Besides the standardized name (stn name),
street address(add1), and PO box (pobox) variables, the matching will also use the city

7. The computation time is unaltered because reclink must compute scores for all pair-wise record
combinations regardless of whether multiple pairs are retained as output.

8. In an extreme case, if n is infinity and minscore minbigram are zero, all candidates which meet the
criteria of the blocking strategy will be output.

9. reclink2 also corrects for several minor bugs in the original program such as preventing the
required() blocking on missing values.

N. Wasi and A. Flaaen 15

and state variables.10

In this first example, we attempt to match via the default one-to-one matching.
Hence, the program will output one potential match (the maximum score per record)
provided the pair-similarity score is above the default minimum of .6. We specify the
variable name containing the generated scores as “rlsc”.

. use respondent_employers_stn, clear

. reclink2 stn_name add1 pobox city state using firm_dataset_stn, idm(rid) idu(
> firm_id) wmatch(10 8 6 5 5) gen(rlsc)

1 perfect matches found

Added: firm_id= identifier from firm_dataset_stn rlsc = matching score
Observations: Master N = 7 firm_dataset_stn N= 14

Unique Master Cases: matched = 5 (exact = 1), unmatched = 2

. sort rid

. list rid stn_name add1 Ustn_name Uadd1 rlsc, sep(4) noobs

rid stn_name add1 Ustn_name Uadd1 rlsc

1 7 11 ROUTH ST 7 11 1722 ROUTH ST 0.978
2 BT & T AT & T 0.944
3 AT & T 208 S AKARD ST AT & T 0.826
4 KROGER KROGER 1014 VINE ST 0.893

5 WAL MART STORES 508 SW 8TH ST WAL MART STORES 508 SW 8TH ST 1.000
6 WLAMART 508 8TH ST .
7 WALMART 508 8TH ST .

There is one obvious problem here. The program does not find a match for the
employers of respondents rid#6 and rid#7 despite the existence of a record of Wal-
Mart with a similar address in the firm dataset. This is an inherent feature of the
one-to-one matching assumption of reclink when perfectly matched records exist. The
employer of rid#5 appears to match perfectly with the firm record for Wal-Mart, and
hence this firm record cannot be subsequently matched with the other respondents
identifying Wal-Mart. (In this case no other pairwise score reached the minimum score
threshold of 0.6, but if the threshold is set to a lower value, it could show false matches
for these records).11

Next, we call the same reclink2 command, but specify the manytoone option:

. use respondent_employers_stn, clear

. reclink2 stn_name add1 pobox city state using firm_dataset_stn, idm(rid) idu(
> firm_id) wmatch(10 8 6 5 5) gen(rlsc) many

1 perfect matches found

Added: firm_id= identifier from firm_dataset_stn rlsc = matching score
Observations: Master N = 7 firm_dataset_stn N= 14

Unique Master Cases: matched = 7 (exact = 1), unmatched = 0

10. City and state names should also be standardized so their formats are consistent in both datasets.
That task, however, is easier relative to standardizing company names and street addresses and is
not illustrated here.

11. reclink does not assume a one-to-one matching in a strict sense. As shown in this example, the
record AT & T from the firm dataset can be used twice for rid#2 and rid#3 because neither
constitutes a perfectly matched pair.

16 Record linkage utilities

. sort rid

. list rid stn_name add1 Ustn_name Uadd1 rlsc, sep(4) noobs

rid stn_name add1 Ustn_name Uadd1 rlsc

1 7 11 ROUTH ST 7 11 1722 ROUTH ST 0.978
2 BT & T AT & T 0.944
3 AT & T 208 S AKARD ST AT & T 0.826
4 KROGER KROGER 1014 VINE ST 0.893

5 WAL MART STORES 508 SW 8TH ST WAL MART STORES 508 SW 8TH ST 1.000
6 WLAMART 508 8TH ST WAL MART STORES 508 SW 8TH ST 0.638
7 WALMART 508 8TH ST WAL MART STORES 508 SW 8TH ST 0.943

Now we see that the rid #6 and #7 are matched with the correct record from the
firm dataset. Next, we draw attention to rid#2 where the self-reported employer BT &
T is incorrectly matched to AT & T from the firm dataset. With these small datasets,
we know that the true match is firm #14 but a mis-spelling of the employer name
(BT&T rather than BB&T) complicates the task. The next example demonstrates one
potential strategy for matching this record in a single run using the npairs option:

. use respondent_employers_stn, clear

. reclink2 stn_name add1 pobox city state using firm_dataset_stn, idm(rid) idu(
> firm_id) wmatch(10 8 6 5 5) gen(rlsc) many npairs(2)

1 perfect matches found

Added: firm_id= identifier from firm_dataset_stn rlsc = matching score
Observations: Master N = 7 firm_dataset_stn N= 14

Unique Master Cases: matched = 7 (exact = 1), unmatched = 0

. sort rid

. list rid stn_name add1 Ustn_name Uadd1 rlsc, sep(4) noobs

rid stn_name add1 Ustn_name Uadd1 rlsc

1 7 11 ROUTH ST 7 11 1722 ROUTH ST 0.978
2 BT & T AT & T 0.944
2 BT & T BB & T 0.937
3 AT & T 208 S AKARD ST AT & T 0.826

3 AT & T 208 S AKARD ST BB & T 0.659
4 KROGER KROGER 1014 VINE ST 0.893
5 WAL MART STORES 508 SW 8TH ST WAL MART STORES 508 SW 8TH ST 1.000
6 WLAMART 508 8TH ST WAL MART STORES 508 SW 8TH ST 0.638

7 WALMART 508 8TH ST WAL MART STORES 508 SW 8TH ST 0.943

Specifying npair(2) tells the program to retain the top 2 matches which satisfy the
score threshold. The result now shows that for rid#2 and #3, two candidates meet this
score criteria. Here we see that the correct match for rid#2 is indeed the 2nd highest
match score for that record. The npairs option enables the researcher to catch this
alternate match within one reclink2 procedure. Typically, the researcher would be
required to reject the high-score match for this record in the clerical review stage, and
then attempt to utilize an alternative matching specification (different set of variables
or weighting schemes) in an additional reclink pass to capture the correct match.

N. Wasi and A. Flaaen 17

We now save this post-reclink2 dataset as “reclink forreview.dta”. After the ma-
chine generates the matched pairs, there is still the work of approving or rejecting each
matched pair. To a large degree, this requires the input of human reviewers. The next
section discusses the clerical review utility that expedites this time-intensive task.

6 The clrevmatch command

After a program generated matched pairs in the linking step, users typically were re-
quired to export results to a different program, re-format, record manual reviews, and
then import back into STATA. Records with accepted matches were then saved sepa-
rately and the matching process continued for records without accepted matches. This
set of steps can become particularly cumbersome in a large, multi-stage linking project.
The clrevmatch program creates a seamless reviewing tool that is efficient, flexible,
and user-friendly.

6.1 Syntax

clrevmatch using filename, idmaster(varname) idusing(varname)

varM(varlist) varU(varlist) clrev result(newvarname)

clrev note(newvarname)
[
reclinkscore(varname) rlscoremin(#)

rlscoremax(#) rlscoredisp(on|off) fast clrev label(label) nobssave(#)

replace newfilename(newfilename) saveold
]

6.2 Description

clrevmatch provides an interactive tool to assist in the clerical review of matched pairs
generated from a record linkage program (e.g., reclink, reclink2). The program
displays a potential match such that the pair of records constituting the match are
easily assessed by the user. The user then inputs a clerical review indicator on whether
the matched pair is accepted, rejected, or left as uncertain. Alternative labels can be
specified. clrevmatch also checks if multiple matches are found for a given record in the
master dataset. If this is the case, the program first indicates how many matches exist
for that record and then displays all potential candidates. The user can then assign a
clerical decision for each candidate. The required inputs are explained below.

filename specifies the name of the dataset to be reviewed. This dataset must
contain machine-generated matched pairs from two datasets (called master and using
datasets) along with their record identifiers, idmaster() and idusing(). The user
must either specify replace to save the clerical decisions into the existing dataset, or
newfilename() to generate results in a new file.

varM() and varU() specify the set of variables in the master and using datasets that
will be displayed during the review process. The user can specify not only the set of

18 Record linkage utilities

variables used in the matching process, but also other existing variables in the dataset
which may help assess the candidates.

clrev result() specifies a (new) variable name to record the user’s clerical review
input. clrev note() specifies a (new) variable name for the user to enter a note asso-
ciated with each pair of records. Because the clerical review process is often a lengthy
and time-consuming component of the record linking process, this program periodically
saves the results as the user progresses. If the reviewer does not finish reviewing the
whole dataset in one session, she can continue to do her work in the next session by
entering the same clrev result() and clrev note() variables. A different reviewer
may want to use different variable names for these two variables.

6.3 Options

reclinkscore() specifies the variable containing the machine-generated score from the
matching step to enable other score-related options.

rlscoredisp() is set to “on” by default, such that the display includes the machine-
generated score from the reclinkscore() option. In some situations, the user may not
want the score to influence the clerical review decision. By setting rlscoredisp(off),
the score will not be displayed.

rlscoremin() and rlscoremax() options allow the user to specify the range of
machine-generated scores so that only those pairs matching the specified criteria will
appear for clerical review.12

fast is an option to help speed up the review process. By default, the reviewer is
asked to confirm the clerical input, and then the program provides the opportunity for
the reviewer to enter any additional notes for later review or editing. Specifying fast

will cause the program to skip these steps.

clrev label() allows the user to specify their own labels for the clerical review
results. By default, the program asks for the reviewer to enter 0 for “not a match”, 1
for “maybe a match”, 2 for “very likely a match”, and 3 “definitely a match”. The user
can specify their own label using STATA’s label format. For example, an alternative
label could be a simpler one “0 “not match” 1 “match”” or a more specific one “1 “only
names matched” 2 “only addresses matched” 3 “both matched” 4 “neither matched””.
The program will attach the specified label to the clrev result() variable.

nobssave() specifies how often the program will save the results. By default, the
program will save the file after every 5 records. The option saveold will save the dataset
in an older STATA format.

12. The default values for rlscoremin() and rlscoremax() are set to 0 and 1, respectively. This is
based on the range of scores generated by the reclink algorithm. If clrevmatch is to be used
with a dataset generated by some other probabilistic record linkage algorithm, rlscoremin() and
rlscoremax() should be set based on the range of scores generated by that algorithm.

N. Wasi and A. Flaaen 19

6.4 Examples

We continue with the matching example from previous sections. Here, we demonstrate
how clrevmatch can assist the user in the review and clerical edits of the matches
after the record linking step. In the example below, we will review the file “reclink-
ing forreview.dta” saved in the previous step. Recall that the pair-similarity score vari-
able in that dataset is “rlsc”. We specify two new variables to contain the clerical result
and note as “crev” and “crnote”. This review will use the default review label.

. clrevmatch using reclinking_forreview, idm(rid) idu(firm_id) varM(stn_name a
> dd1 pobox city state) varU(Ustn_name Uadd1 Upobox Ucity Ustate) reclinkscore(
> rlsc) clrev_result(crev) clrev_note(crnote) replace

Total # pairs to be reviewed = 9
--
File 1

stn_name: 7 11
add1: ROUTH ST
pobox:
city: DALLAS
state: TX

--
File 2

Ustn_name: 7 11
Uadd1: 1722 ROUTH ST
Upobox:
Ucity: DALLAS
Ustate: TX

match score: .987

How would you describe the pair?
clrevlbl:

0 not a match
1 maybe a match
2 very likely a match
3 definitely a match

please enter a clerical review indicator:.

At this point the user would input a clerical review label for this potential match (most
likely a 3 for “definitely a match”), and then as fast is not specified, the program would
offer the option to go back to change the answer or to enter a manual note (this display
is omitted.) Next, the program will move to the second record.

pairs left to be reviewed = 8/9
There are 2 potential candidates for this record.
All candidate profiles will be first displayed.
We will then ask you to describe the match quality of each candidate.

--
File 1

stn_name: BT & T
add1:
pobox: BOX 345
city: DALLAS

20 Record linkage utilities

state: TX
--
File 2

candidate # 1
Ustn_name: AT & T
Uadd1:
Upobox: BOX 132160
Ucity: DALLAS
Ustate: TX

match score: .944

candidate # 2
Ustn_name: BB & T
Uadd1:
Upobox: BOX 345
Ucity: DALAS
Ustate: TX

match score: .937
--

How would you describe candidate # 1?
clrevlbl:

0 not a match
1 maybe a match
2 very likely a match
3 definitely a match

please enter a clerical review indicator:. 0

How would you describe candidate # 2?
clrevlbl:

0 not a match
1 maybe a match
2 very likely a match
3 definitely a match

please enter a clerical review indicator:. 2

In this case, there are two candidates with the score above the threshold for rid #2.
The program first displays all candidates and asks the reviewer to judge each candidate.
The user can now throw out the 1st match pertaining to the rid #2 record and approve
the 2nd match. Recall that this record has two candidates to be reviewed because we
have used the npairs(2) option in reclink2. If we were to use the baseline reclink,
the matched file to be reviewed would contain only the first candidate. The reviewer
would then reject this candidate, and another run of record linkage would be needed to
find the match for rid #2.

To specify alternative labels, the user can set up a local macro in the STATA label
format and enter this variable in the clrev label() option, e.g.,
. local mylabel “0 “not match” 1 “match””
and then add the term clrev label(‘mylabel’) in the clrevmatch command line.

In practice, datasets with machine-generated pairs may contain several thousand or
even millions of pairs. Researchers may accept a small margin of error by reviewing only
pairs within some middle range of scores. For example, one may specify rlscoremin(.8)

and rlscoremax(.97) and assume that all pairs with scores higher than .97 are true
matches.

N. Wasi and A. Flaaen 21

7 Conclusions

We have provided a new set of STATA commands which facilitate several stages of
probabilistic record linkage. The stnd compname and stnd address commands help
researchers properly prepare the data files before linking them. The commands are
flexible in the sense that advanced users can modify the default pattern files. The
reclink2 command is a generalized version of the existing record linkage command
(reclink). This new command introduces an option for many-to-one linking and an
option to output more than one potential matched candidate. Finally, the clrevmatch

helps researchers interactively review the generated matched pairs without exporting
and importing to another software. These utilities can also be used independently.
For example, the stnd compname and stnd address commands may be used in a sin-
gle dataset to standardize the record formats before applying the built-in duplicates

command. The reclink2 and clrevmatch commands are not limited to linking firm
databases. They can be used with other types of databases such as those containing
lists of patients, customers, or benefit plans. The clrevmatch command can also be
used with any dataset containing potential match-paired records.

8 References
Abowd, J., and M. Stinson. 2013. Estimating measurement error in annual job earnings:

A comparison of survey and administrative data. Review of Economics and Statistics
95: 1451–1467.

Agrawal, A., and P. Tambe. 2013. Private Equity, Technological Investment, and Labor
Outcomes. Available at SSRN: http://ssrn.com/abstract=2286802.

Blasnik, M. 2010. RECLINK: Stata module to probabilistically match records. Statis-
tical Software Components.

Christen, P. 2012. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer.

Fellegi, I., and A. Sunter. 1969. A Theory of Record Linkage. Journal of the American
Statistical Association 64: 1183–1210.

9 Acknowledgments

The Summer Working-group for Employer List Linking(SWELL)– a collaboration be-
tween researchers at the US Census Bureau, University of Michigan, and Cornell Uni-
versity – provided several useful suggestions for the stnd compname command. Ann
Rodgers contributed to the agg acronym.ado subcommand. We gratefully acknowledge
support by the Alfred P. Sloan Foundation for the University of Michigan’s Census-
Enhanced HRS (CenHRS) Project and by the National Science Foundation (SES1131500)
for the University of Michigan node of the NSF-Census Research Network (NCRN).

	Record Linkage using STATA: Pre-processing, Linking and Reviewing Utilitiesto.44em.to.44em.N. Wasi and A. Flaaen

